
INTERNET DOCUMENT INFORMATION FORM 

A . Report Title:     Throughput Characterization of a PC with a High 
Speed ATM Network Interface 

B. DATE Report Downloaded From the Internet   9/22/98 

C. Report's Point of Contact: (Name, Organization, Address, 
Office Symbol, & Ph #): Nasa Lewis Research Center 

21000 Brookpark Road 
Cleveland, OH 44135-3127 
ATTN: Doug   Hoder (216) 433-8705 

D. Currently Applicable Classification Level: Unclassified 

E. Distribution Statement A: Approved for Public Release 

F. The foregoing information was compiled and provided by: 
DTIC-OCA, Initials:   VM  Preparation Date:_9/23/98  

The foregoing information should exactly correspond to the Title, Report Number, and the Date on 
the accompanying report document. If there are mismatches, or other questions, contact the 
above OCA Representative for resolution. 



Throughput Characterization of a PC with a 

High Speed ATM Network Interface * 

C.L. Chang, T.C. Hou, Y.S. Chu, K.J. Chen 
National Chung Cheng University 

Department of Electrical Engineering 
Chia-Yi, Taiwan 621 ROC 

tch@ee.ccu.edu.tw 

Abstract 
With the broad acceptance of the ATM technology, development of the related host- 

interface has been actively carried out. We have built an ATM/TAXI network in- 

terface card for the ISA-bus based Personal Computer (PC) host. Two FPGAs that 

support the TAXI interface and the ATM/AAL5 functions are implemented for such 

a high speed communication interface. Based on this prototype, we measure indi- 

vidual communication protocol stack throughputs and compare them with those of 

the Ethernet network. We then derive a design guideline for improving the system 

throughput of an ATM PC host. 
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1    Introduction 

Recently, we have seen the demand for multimedia communications grows at a fast 

speed. As this demand requires higher bandwidth and better Quality of Service (QoS) 

than what the conventional LAN (e.g., Ethernet) can support, alternative networking 

approaches are being sought to satisfy this demand. ATM technology is generally 

considered the most promising networking technology to provide transport service 

to applications with widely different traffic characteristics. ATM can offer transport. 

speed at higher than 100 Mbps and its connection-oriented approach makes it easier 

to provide QoS guarantee to the users. Research and development efforts in this area 

have been actively carried out in the past few years. 

We have designed ATM/AAL5 chips and built a high speed ATM/TAXI network 

interface card (NIC) for use in the ISA-bus based PC host. Our intent was to come 

up with a prototype subsystem that allows us to further investigate the end-to-end 

performance impacts, when the multimedia application is transported. However, 

upgrading the networking interface to a high speed ATM interface does not automat- 

ically increase the end-to-end application throughput. It is well known that the higher 

layer networking protocols, e.g., the transport layer TCP protocol, are the bottleneck 

of the end-to-end transmission path over a high speed communication network. 

Many studies [1, 2, 4, 7, 9] have been conducted that discovered the cost of the 

transport protocol overhead. The consensus is that the memory copy operation in the 

implementation of the TCP protocol is the main reason that TCP consumes much 

CPU time [4]. Within the TCP protocol, the memory access for checksum calculation 

also consumes a significant portion of the protocol processing time [2, 7]. Besides the 

TCP protocol processing, other operations are also required for moving the data from 

the application to the network. These operations, e.g., the driver for the networking 

device, also consume CPU time. 

In this paper, we concentrate on the throughput characterization of the NIC and 

the device driver. For both the DOS and the Windows PC communication envi- 

ronments, we measure the CPU overhead of each function block on the end-to-end 



communication path and compare the end-to-end throughputs between the Ethernet 

network and ATM network platform. From these studies, we know quantitatively the 

contribution from each part of the communication path to the CPU overhead. We also 

derive a design guideline for improving the end-to-end communication throughput of 

a PC-ATM platform, and a formula to predict the system throughput for different 

80x86 CPU PC platform. 

The rest of this paper is organized as follows. In section 2, we present the ATM NIC 

architecture that uses a hardware approach to process the ATM/AAL5 protocol. The 

pipeline operation is adopted to eliminate the store-and-forward data transmission 

latency in the NIC. We describe the testing environment for the ATM NIC in section 

3. In section 4, we show the measurement results for each communication components 

in different PC configuration platforms and derive a design guideline for improving 

the system performance. Section 5 summarizes our studies. 

2    Hardware Architecture 

The ATM host protocol architecture can be viewed as a stack of layers which are 

illustrated in Fig. 1 and the PC system architecture is shown in Fig. 2. When we 

began to design the host interface card, we wanted it to support all current Internet 

applications that ran on the Ethernet PC DOS/Windows 3.1 environment. From 

this viewpoint, the easiest method is to replace the Ethernet packet driver by the 

ATM device driver. We develop our ATM device driver which is compatible with the 

Ethernet packet driver and provides all interface specified in the FTP packet driver 

specification [6] to the upper layer. In Fig. 3, we show the high-level ATM network 

interface card hardware architecture for the ISA-bus PC. To leave the host CPU 

more time to process upper layer protocol, we design two FPGA ASICs (ATM_Tx 

and ATM Jbc) which perform all cell-based functions in the transmitter and the re- 

ceiver. The ATM_Tx uses the internal 8-bit bus design, and is clocked at 12.5 MHz. 

The design is a 3-stage pipeline structure to achieve high performance and minimum 

buffering of data.  The ATM-Tx FPGA's main features are: In the AAL layer, we 



implement the ITU-T 1.363 AAL5 recommendation [8], such as non-assured data 

transfer, pipeline operation, 0-47 octets padding, CRC-32 generation [3, 5], construc- 

tion of the CS-PDU (Convergence Sublayer Protocol Data Unit) from the CS-SDU 

(Convergence Sublayer Service Data Unit), and SAR sublayer functions. In the ATM 

layer, we provide the generation of the 8-bit HEC in the ATM header, "more-bit" 

(ATM-user-to-ATM-user indication bit of the PT field) setting for the AAL5 proto- 

col, and the 53-octet ATM cell generation. To reduce the ATM NIC cost and area, 

we also include the TAXLTx controller in the ATM.Tx FPGA. The above functions 

are implemented by hardware without any software's intervention. The design phi- 

losophy for the ATM_Rx follows a similar idea as the ATM.Tx to realize the ATM 

and AAL5 layer receiving functions. 

2.1    Data and Control Flow for the Transmitter 

The major functions for the transmission part of the host interface are: 

1. move the CS-SDU from the host memory to the Tx_Buffer in the NIC, 

2. convert the CS-SDU to a CS-PDU, 

3. fragment the CS-PDU into a sequence of 48-octet ATM payloads, 

4. prefix the 5-octet ATM header to the 48-octet ATM payload to form an ATM 

cell, and 

5. feed ATM cells to the TAXI link. 

In the Windows 3.1 environment, when the application has data to be transmitted, 

it calls the Winsock entity to generate a CS-SDU. When the Winsock has a CS-SDU 

to send, it requests the ATM device driver to transmit this CS-SDU over the ATM 

network to the peer entity. When the ATM device driver receives the upper layer 

request to send a packet, the first step is to detect whether the ATM_Tx chip is in the 

free state. If the ATM.Tx is in the free state, the CS-SDU is allowed to be transmitted 



over the ISA bus to the interface card. Next, the device driver sets the ATM_Tx chip's 

registers (packet length, VCI/VPI value, and start flag of the ATM.Tx). After the 

ATM-Tx has been notified, the device driver moves the CS-SDU to the Tx_Buffer. 

The operation at the ATM_Tx uses a pipeline technique. In other words, moving data 

from the host to the Tx_Buffer and the processing of the ATM/AAL5 function at the 

ATM_Tx are done concurrently. Because the ATM/AAL5 operation rate is 100 Mbps, 

which is much faster than the ISA bus speed, the Tx_Buffer has a probability of being 

empty. When the Tx_Buffer is empty, the ATM-Tx needs to halt until further data 

arrives in the Tx_Buffer. 

The TAXLTx controller monitors the TAXLTx FIFO status and decides whether 

it needs to request the TAXI to transmit an ATM cell or not. It also provides the 

TAXI chip the required signals during transmission to satisfy the ATM forum UNI 

physical layer specification. 

2.2    Data and Control Flow for the Receiver 

When the message is transferred across the ATM network, it has been segmented 

into a sequence of cells. In ATM, the recurrence of cells containing information from 

an individual user is not necessarily periodic. Moreover, due to the statistical multi- 

plexing effect, cells from different messages that are received at the receiver may also 

arrive with arbitrary interleaving. Thus, the receiver has to concurrently reassemble 

these interleaved cells to each individual message and then forward messages to the 

upper layer [8]. 

In our implementation, we use a semi-dynamic bank allocation method for the 

reassembly buffer design. The RxJBuffer memory is managed by the CAM (Content 

addressable Memory) which is a fully customized design within the ATM_Rx chip. 

The receiver also performs the following functions: 

1. delineates the ATM cell out of the TAXI chip (done by the TAXIJtx controller), 

2. processes the ATM cell which is temporarily stored at the TAXIJlx FIFO, 

including the VCI/VPI, HEC, and the "more-bit" for AAL5 in the 5-octet 



ATM header, 

3. extracts the SAR-PDU from the ATM cell, 

4. identifies the corresponding receiving bank number for the received cell for re- 

assembling CS-PDU, 

5. performs the CS-PDU's CRC-32 calculation, 

6. interrupts the host as soon as the CS-SDU is completely reassembled. 

At the receiver side, if the TAXIJlx controller determines that the TAXIJlx FIFO 

has at least one cell, it signals the ATM Jtx to receive the ATM cell from the TAXI-Rx 

FIFO. When the ATM_Rx receives the request from the TAXIJlx controller, it begins 

the reassembly functions for this received cell. First, the ATM_Rx calculates the HEC 

of the ATM cell header. If the HEC is in error, then it discards this received cell. 

Otherwise, it searches the internal CAM which records the reassembling connection 

information, such as the temporary CRC-32 value, the packet length, VCI/VPI, and 

the bank status (free, busy, or completed-reassembly). If the incoming cell belongs to 

a new connection, then it searches a free bank from CAM for reassembling this cell. 

If the incoming cell is the last cell (more-bit=l), the reassembly of the CS-PDU is 

completed. 

When the ATM_Rx has a reassembled CS-PDU, it generates an interrupt signal 

to the host. When the host receives an interrupt signal, it then executes the interrupt 

routine (the receiver() function of the device driver). When the receiver() of the device 

driver is started, the first step is reading the CS-SDU's information from the ATM_Rx. 

The information includes the length of the CS-SDU, the bank number, and the CRC 

result (error or correct). The second step is moving the CS-SDU from the Rx-Buffer 

to the host memory. When the CS-SDU has been completely moved to the host, 

the third step is releasing the reassembly bank. This bank is then available for the 

ATM Jtx to reassemble other CS-SDUs. 



3 Testing Environment 

Two ATM NICs are used for point to point test. In the first step of the testing, 

we focus on testing the ATM.Tx and ATM-Rx FPGAs. The test includes interface 

testing and ATM/AAL5 protocol operation testing. In the ATM/AAL5 protocol 

operation testing, besides the HEC, CRC-32, and more-bit tests, different CS-SDU 

packet lengths are used to test the padding function (no padding, padding at two 

cells, and one cell padding) of the CS-PDU. 

After the point-to-point tests are verified, we also use the HP ATM protocol ana- 

lyzer to test the ATM NIC. In testing the transmitter, the ATM protocol analyzer can 

correctly receive CS-SDU from our ATM NIC. In testing the receiver, our ATM NIC 

can also receive the CS-SDU from the ATM protocol analyzer. Through the ATM 

protocol analyzer verification, we ensure that our ATM/AAL5 protocol operation is 

correct. Finally, we combine the hardware and software to do the system testing. 

The testing environment is shown in Fig. 4. 

We use Fore Systems' ForeRunner ASX-200 ATM LAN switch as our ATM switch. 

As Fig. 4 shows, we have successfully demonstrated the following applications: In 

the DOS environment, we can execute FTP, Telnet, and several network games via 

the ATM NIC over the Fore switch. In the Windows environment, we build a WWW 

server in one PC, and run the NETSCAPE in another PC to access WWW server in- 

formation. Furthermore, we use the Video Phone On Network (VPON) product from 

the Formosa Industrial Computing, Inc. to demonstrate the video phone application 

through our ATM NIC cards. The VPON uses the motion JPEG compression and 

runs on the Windows 3.1 operating system. The above tests are all working correctly. 

4 System Throughput Evaluation 

Once we have successfully built a high speed ATM NIC, the next step is to understand 

how the application throughput is improved. It is well known that the end-to-end 

throughput at the application level does not scale up accordingly as the NIC speed is 



increased. We thus would like to know in what way the end-to-end system throughput 

is affected by the various components on the end-to-end path. In this section, we 

report the measurement results on different PC platforms. We conduct a series of 

measurements to find out the CPU overhead on each part of the communication 

path within the PC. Specifically, the system performance improvement is quantified, 

when the 10 Mbps Ethernet network interface is upgraded to the 100 Mbps ATM 

network interface and when the CPU is upgraded to a more powerful one. From 

these measurements, we derive a formula that predicts the system throughput for 

different 80X86 CPU PC platforms. With all these knowledge, we are able to point 

out which part of the communication path needs to be improved, if we want to fully 

utilize the ATM link bandwidth. 

4.1    Measurement Configuration 

In general, the PC communication environment can be divided into two categories. 

One is the DOS environment and the other is the Windows environment. In the 

DOS environment, all networking applications (AP) are running on top of the packet 

driver. There are three main function blocks in moving the data between the AP 

and the network: the NIC, the packet driver, and the DOS AP. There is only one 

data copy operation from the AP to the NIC or from the NIC to the AP in the 

DOS communication environment. With the ISA bus, moving data between the host 

and the NIC is done asynchronously by the host CPU (it will consume some CPU 

time). When the NIC receives a packet from the network, the interrupt method is 

used by most Ethernet NICs to ask the host CPU to copy the packet from the NIC 

to the host memory. Note that, the Ethernet NIC operates in a store-and-forward 

manner on the transmission side. The extra Ethernet transmission latency may have 

an impact on whether the transmission side or the receiving side is the bottleneck of 

the transmission path. 

In the Windows 3.1 environment, most networking APs are running on top of the 

Winsock interface. Its function blocks consists of the NIC, the packet driver, Winpkt, 

Winsock (TCP/IP), and the Windows AP. In this communication flow, there are three 
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data copy operations in addition to the TCP internal memory access for the checksum 

calculation [4]. These three copy operations are done between the NIC and Winpkt, 

between Winpkt and Winsock, and between Winsock and AP. 

The measurement environment is shown in Fig. 5 (the shadow areas are where 

our test programs are). We use two PCs interconnected by an Ethernet and an 

ATM network, respectively. The PC with the 80486-33 CPU is used as the reference 

platform. While the measurement is done over an Ethernet, we do not allow other 

stations to send data on the Ethernet. Before we do the packet driver measurement, 

we use the Ethernet protocol analyzer (Sniffer) to obtain a few key parameters for 

the DOS FTP transaction. We discover that the maximum Ethernet frame length is 

566-byte. Since the combined overhead of TCP, IP, and Ethernet is 54-byte, we know 

that the TCP SDU length is 512-byte. 

We first write a test program on top of the packet driver in the DOS environment to 

measure the processing overhead (in ms/Kbyte) due to either the Ethernet driver or 

the ATM driver. As Fig. 5 shows, one PC station at the transmitting side sends data 

to the packet driver, which allows us to measure the transmitting driver overhead, 

and the other PC station receives the data from the packet driver, which allows us 

to measure the receiving driver overhead. Every transaction contains 10-Mbyte data, 

which is sent as 2048 512-byte TCP SDUs. A logic analyzer is used to measure the 

CPU cost in moving the data between the host and the NIC over the ISA bus. 

In the Windows environment, we write a client/server test program (the client sends 

data to the server) over the Winsock interface. On each PC, 4096 bytes of buffer is 

pre-allocated for the Winsock. In the client, the Winsock's maximum transmission 

unit (MTU) is 660 bytes. We send 1 Mbyte data in the Winsock test program from the 

client to the server to measure the combined overhead due to both the Winsock and 

the driver. The Winsock overhead can be derived by deducting the driver overhead 

from the combined Winsock/driver overhead. 



4.2    Measurement Results 

Table 1 shows our measurement results for the DOS environment. Note first the 

NIC latency difference betweeen the Ethernet NIC and the ATM NIC. In general, 

the Ethernet NICs use a store-and-forward approach in moving data from the host 

to the network. Each 1000 bytes incur 0.8msec store-and-forward delay on a 10Mbps 

Ethernet NIC. For the ATM NIC, a pipeline approach is taken. Hence, there is 

only a negligible NIC latency. This NIC latency has an impact on the end-to-end 

throughput in certain circumstances as will be discussed later. Table 1 also lists the 

throughput and the CPU cost for the transmitter driver, the receiver driver (including 

interrupt processing), moving the data across the bus, and the AP limit. The values 

in the "AP limit" row of Table 1 represents the maximum AP throughput and the 

minimum CPU cost, respectively, provided by the protocols underneath the AP. In 

other words, the CPU cost in the AP limit is the sum of all CPU costs that are required 

to interface an AP with the NIC. In our case, it is equal to the sum of the receiver 

driver cost and the bus data copy cost. The last row of Table 1 shows the measured 

end-to-end AP (ftp) throughput. Regarding the driver costs at either the transmitter 

side or the receiver side, our ATM driver has a lower CPU cost than the Ethernet 

driver. The CPU cost for the bus data copy depends on the CPU and internal bus 

used. It is independent of whether an Ethernet NIC or an ATM NIC is used. As 

for the driver itself, the transmitting side costs less CPU time than the receiving 

side. This is because the Rx.driver complexity is typically higher than that of the 

Tx.driver and every reception of a packet introduces an interrupt overhead, which 

we include in the measurement of the Rx.driver. The receiving side is thus generally 

the slower part of the communication path in the DOS communication environment. 

However, the above statement is not always true in the Ethernet enrironment. As 

Figure 6 shows, on the transmitting side, there is a store-and-forward delay on the 

Ethernet NIC. This delay time is proportional to the packet length. If the sum of the 

Tx_driver overhead plus the Ethernet transmission latency is greater than the sum 

of the Rx.driver overhead plus the interrupt overhead, then the transmitting side 

becomes the slower part on the end-to-end transmission path. For our ATM NIC, we 
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adopt the pipeline operation to eliminate this transmission latency. In this case, the 

receiving side is the bottleneck. 

1U Mbps Ethernet 
ISA Bus 

1UU Mbps ATM 
ISA Bus 

NIC latency 0.8ms/Kbyte negligible 
throughput CPU cost throughput CPU cost 

Tx driver 850Kbyte/s 1.18ms/Kbyte 5076Kbyte/s 0.19ms/Kbyte 
Rx driver and int 438Kbyte/s 2.28ms/Kbyte 800Kbyte/s 1.25ms/Kbyte 

Bus data copy 950Kbyte/s 1.05ms/Kbyte 950Kbyte/s 1.05ms/Kbyte 

AP limit 300Kbyte/s 3.33ms/Kbyte 435Kbyte/s 2.30ms/Kbyte 
ftp ETE 137Kbyte/s 7.30ms/Kbyte 210Kbyte/s 4.76ms/Kbyte 

Table 1. Measurement results in the DOS environment. 

Let Txmit, Trcvr, Thus, Tftp be the CPU overheads due to executing the Tx_driver 

codes, executing the Rx_driver codes (except moving data across the ISA bus), moving 

data across the ISA bus, and executing the FTP codes, respectively. Let Teie and Rete 

be the CPU overhead and the throughput of the end-to-end FTP transmission. Also 

denote Tnic as the store-and-forward delay incurred in the network interface card. If 

the receiver is the slower part of the communication path, we have 

■L e±e.    —    -* TI + Thus + Tftp . (1) 

If the transmitter is the slower part of the communication path, we have 

■L ete   —   -L nie   T   -L xmit   T   J- bus   T   -L j ftp ■ 

In either case, if the NIC throughput is higher than 5^, then 

1 

(2) 

R, ete 
- ete 

In both the Ethernet and the ATM configurations of our measurements, the re- 

ceiving side is the slower part of the transmission path. Hence, we expect equation 

1 to hold. Indeed, for the 100Mbps ATM NIC, we have 4.76 = 1.25 + 1.05 + 2.46. 

However, for the 10Mbps Ethernet NIC, we obtain 7.30 > 2.28 + 1.05 + 2.46. To 

resolve this discrepancy, we resort to an Ethernet protocol analyzer which is used 

to capture all Ethernet frames for this FTP transaction. To our surprise, there are 
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many ACK frames which we did not account for previously. It reveals that the DOS 

FTP protocol is a full duplex protocol, which is not suitable to run on the Ethernet, 

as the ACK frames flow in the opposite direction of the FTP data frames, causing 

collisions on the Ethernet. Among the 7.30ms/Kbyte overhead of the DOS FTP 

transaction, the collision overhead is 1.54ms/Kbyte, quite a significant figure. In an 

ATM network, which is a full duplex environment, there is no collision problem. 

Table 2 shows our measurement results for the Windows 3.1 environment. The 

first row combines the Rx-driver and bus data copy values in Table 1. The entries in 

the AP limit are obtained from running the Winsock test program. We also measure 

the actual memory copy time for the Intel 80486 CPU. By deducting the receiver 

driver CPU cost and twice the memory copy cost from the CPU cost in the AP limit, 

we obtain the CPU cost of the Winsock and Winpkt. In both the Ethernet and the 

ATM cases, the Winsock CPU costs come out at 3.95rasec/Kbyte, which in a sense 

validates our measured results. The entries in the last row of Table 2 are obtained 

from running the Windows ftp program. When deducting the CPU cost of the AP 

limit from the CPU cost of the end-to-end ftp, we get the CPU cost of the ftp code 

itself. The values are 2.32msec/Kbyte and 2.28msec/Kbyte for the Ethernet and 

the ATM case, respectively. The difference is less than two percent. The collision 

problem on the Ethernet Windows 3.1 environment does not further reduce the the 

end-to-end throughput. 

Table 2 also shows that, in the Windows environment, upgrading the Ethernet 

NIC to a high speed ATM NIC does not increase the end-to-end AP throughput by 

much. In the PC Windows environment, most of the processing overheads come from 

the Winsock-f Winpkt portion of the protocol stack. Among the Winsock+Winpkt 

protocol, a large portion of the overhead come from the TCP/IP protocol processing. 

The two data copy operations is roughly 10 percent of the protocol processing. Figure 

7 shows the percentages of each processing overheads of the 486-33 ISA-bus host with 

either the Ethernet or the ATM NIC. 
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10 Mbps Ethernet 
ISA Bus 

100 Mbps ATM 
ISA Bus 

throughput CPU cost throughput CPU cost 
Rx_driver + bus 300Kbyte/s 3.33ms/Kbyte 434Kbyte/s 2.30ms/Kbyte 

Winsock+Winpkt 253Kbyte/s 3.95ms/Kbyte 253Kbyte/s 3.95ms/Kbyte 
memory copy x 2 0.40ms/Kbyte 0.40ms/Kbyte 

AP limit 130Kbyte/s 7.68ms/Kbyte 150Kbyte/s 6.65ms/Kbyte 
ftp ETE 100Kbyte/s lO.Oms/Kbyte 112Kbyte/s 8.93ms/Kbyte 

Table 2. Measurement results in the Windows 3.1 environment. 

We next want to understand how much system throughput can be gained when 

the ISA bus is upgraded to the PCI bus, and when the 486-33 PC platform is upgraded 

to the 586-100 PC platform. The throughputs for these eight different configurations 

(ISA bus vs. PCI bus, Ethernet NIC vs. ATM NIC, and 486-33 PC vs. 586-100 PC) 

are shown in Tables 3 and 4. Note that most PC Ethernet interface cards are designed 

for the ISA bus. The CPU is responsible for moving data between the host and the 

network interface. For the PCI interface, moving data between the host and the NIC 

can be done by the DMA function which doesn't cost any CPU time. Therefore 

the high speed DMA function of the PCI bus does not contribute negatively to the 

end-to-end throughput. 

In the 486-33 PCI platform, the receiver is the slower part of the communication 

path, therefore the end-to-end AP throughput is upper-bounded by 

1 
Rete    < (3) 

J- rcvr   T   -L winsock 

When a high speed PCI bus is used, the bus data movement overhead is negligible, 

resulting in approximately 16 percent improvement in the system throughput. This 

is because the CPU-time-consuming upper layer (Winsock) protocol is the bottleneck 

of the system throughput. The overhead percentages of each function blocks based 

on the 486-33 PCI bus platform are shown in Figure 8. Note the increase in each 

function block's percentage when compared with those in Figure 7. 
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486-33 FC Platform 
Ethernet 
ISA Bus 

ATM 
ISA Bus 

Ethernet 
PCI bus 

ATM 
PCI bus 

Bus 
data copy 950 K :>yte/s high 

driver 
throughput 

Rx 
300 Kbyte/s 

Rx 
450 Kbyte/s 445 Kbyte/s 

Rx 
800 Kbyte/s 

2 times 
memory copy 2532 Kbyte/s 

winsock 
winpkt protocol 253 Kbyte/s 

Max AP 130 Kbyte/s 150 Kbyte/s    150 Kbyte/s 178 Kbyte/s 

Table 3. Throughput Comparisons of four different configurations with 486-33 CPU. 

As the CPU is upgraded to 586-100, the CPU time to process Winsock, Winpkt, 

driver, and interrupt is reduced. For configurations with the Ethernet NIC, the 

Tx_driver overhead plus the Ethernet transmission latency (with the packet length 

equal to 512 bytes) is greater than the sum of the Rx_driver and the interrupt over- 

heads. In this case, the transmitting side is the slower part of the driver. The cor- 

responding processing overhead percentages are shown in Figure 9. Figure 9 shows 

that, for the ISA-bus case, the NIC store-and-forward latency (26%) and moving 

data across the bus (29%) each consumes comparable percentage of CPU time as the 

Winsock/Winpkt (32%). When the ISA bus is replaced by the PCI bus, the NIC 

store-and-forward latency (37%) and the Winsock/Winpkt processing (45%) are the 

dominant components of the CPU overhead. This clearly indicates how large an im- 

pact the NIC store-and-forward latency can have on the end-to-end throughput. For 

configurations with the ATM NIC, there is no NIC store-and-forward latency. In this 

case, the receiving side is the slower part of the driver. The corresponding processing 

overhead percentages are shown in Figure 10. In the case of the ISA bus, the ISA bus 

overhead (40%) is comparable with the Winsock/Winpkt (43%) overhead. When the 

ISA bus is replaced by the PCI bus, the Winsock/Winpkt processing (72%) is the sole 

dominant component of the CPU overhead. This is the case (586-100 CPU, PCI bus, 

ATM NIC) which we can expect the highest AP throughput (less than 730 Kbyte/s) 

among all configurations we discussed. The efficiency of the Winsock/Winpkt imple- 

mentation significantly affects the achievable AP throughput. 
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586-100 PC Platform 
Ethernet 
ISA Bus 

ATM 
ISA Bus 

Ethernet 
PCI bus 

ATM 
PCI bus 

Bus 
data copy 1111 Kbyte/s high 

driver 
throughput 

rp 

500 Kbyte/s 833 Kbyte/s 
Tx 

910 Kbyte/s 3333.3 Kbyte/s 
2 times 

memory copy 11764 Kbyte/s 
winsock 

winpkt protocol 1016 Kbyte/s 
Max AP 328 Kbyte/s 440 Kbyte/s    465 Kbyte/s 730 Kbyte/s 

Table 4. Throughput Comparisons of four different configurations with 586-100 

CPU. 

As for the end-to-end throughput, Table 4 shows that, with a more powerful CPU, 

the configuration with the ATM NIC does show a higher percentage of increase in 

throughput than that with the Ethernet NIC. This is mainly due to the pipeline 

design of the ATM NIC. 

From many measurements, we conjecture that the end-to-end throughput of a 

Windows 3.1 AP running on a 80x86-like PC with the PCI-bus, ATM NIC is bounded 

by 
CPU  speed 

Max AP throughput < 0.8 *  ■—— * 178 , (4) 

where the CPU speed is measured by the benchmark tool of ZIFF-DAVIS' PC bench 

9.0 version. To derive this throughput bound, we assume that the overhead due to 

moving data across the bus is negligible and the NIC adopts pipeline operations to 

eliminate the NIC store-and-forward latency. In this case, the majority of factors that 

affect the throughput are software overheads (Winsock, Winpkt, driver, interrupt, and 

memory-to-memory data copy) and they are fully dependent on the CPU computing 

power. Our empirical data shows that, if the CPU computing power increases by X 

times then the system throughput increase approximately by 0.8*X times (because 

different peripheral effects such as the cache size and the memory speed need to be 

factored into considerations). In this throughput conjecture, we use the 486-33 CPU 

measurement results as the reference value. 
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Based on the above results, we conclude that in order to fully utilize the high 

speed communication bandwidth provided by ATM and the PCI bus, The following 

considerations are critical. 

1. In the NIC, we need to implement the pipeline design on the transmitter part 

to eliminate the NIC store-and-forward latency. 

2. To reduce the bus data movement overhead between the NIC and the host, the 

PCI bus burst mode data movement (DMA) is preferred. 

3. At the receiving side of the driver, the hardware interrupt that triggers the 

packet receiving function at the host also contributes significant CPU overhead. 

If the NIC implements the PCI bus master function, it is not necessary to use 

the hardware interrupt method to inform the host to do the data movement. 

4. Data copy and Winsock protocol processing overhead is the dominant factor of 

the system throughput. Reducing the number of memory accesses in the imple- 

mentation of the TCP protocol has a major impact on the system throughput. 

5    Summary 

An interface architecture based on our own designed ATM/AAL chipsets plus the 

TAXI chip for the transmission unit is developed. For supporting the ATM layer and 

AAL5 layer functions, we have implemented ATM.Tx and ATM-Rx FPGAs which 

conform to the specification recommended by the ITU-T. The transfer rate of the 

ATM network interface card is 100 Mbps. The interface architecture can concurrently 

perform all the related functions in parallel, which allows for further upgrade in the 

transmission rate from 100 Mbps to the OC-3 or higher rates. 

With this ATM NIC, we measure the overhead due to each function block in the 

PC communication environment. System throughputs are measured/quantified when 

the underlying configuration is an ISA bus Ethernet, an ISA bus ATM, a PCI bus 

Ethernet, and a PCI bus ATM, with either the 486-33 or the 586-100 PC platform. 

From these measurements, we quantify the throughput overhead for the end-to-end 
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communication. These communication overheads include: the NIC store-and-forward 

latency, moving data across the bus, the hardware interrupt at the receiving end, and 

the upper layer data copy and protocol processing. To fully utilize the network link 

bandwidth, every part of the communication path needs to be improved. The pipeline 

architecture can be used to eliminate the NIC store-and-forward latency. The PCI 

bus master function can be adopted in the NIC to eliminate the receiving hardware 

interrupt overhead and improve the performance for moving data across the bus. 

Transport layer protocol processing can be made faster by reducing the number of 

memory accesses. If all the above overheads can be properly reduced, the end-to-end 

system performance can be proportionly improved over a high bandwidth ATM link. 
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Figure 3: High-level ATM NIC hardware architecture. 
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